Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Chem Biol Drug Des ; 100(5): 699-721, 2022 11.
Article in English | MEDLINE | ID: covidwho-2001616

ABSTRACT

Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Computers , Drug Design , Drug Discovery/methods , Humans , Molecular Docking Simulation
2.
Chemosphere ; 306: 135578, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1914233

ABSTRACT

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.


Subject(s)
DNA, Single-Stranded , Doxorubicin , Nanoparticle Drug Delivery System , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Calcium , DNA, Single-Stranded/analysis , Doxorubicin/administration & dosage , HEK293 Cells , HeLa Cells , Humans , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics , Zinc Oxide
3.
Sci Total Environ ; 825: 153902, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1692893

ABSTRACT

Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 µm and 0.78 to ≈0.80 µm, showing good physical interactions with the recombinant SARS-CoV-2 spike antigen. MTT assay was performed and compared to the conventional synthesis methods, including hydrothermal, solvothermal, and microwave-assisted methods. The synthesized nanodevices demonstrated above 88% relative cell viability after 24 h and even 48 h of treatment. Besides, the ability of the synthesized nanomaterials to detect the recombinant SARS-CoV-2 spike antigen was investigated, with a detection limit of 5 nM. The in-situ synthesized nanoplatforms exhibited low cytotoxicity, high biocompatibility, and appropriate tunability. The fabricated nanosystems seem promising for future surveys as potential platforms to be integrated into biosensors.


Subject(s)
Biosensing Techniques , COVID-19 , Metal-Organic Frameworks , Biosensing Techniques/methods , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
4.
Environ Sci Pollut Res Int ; 29(57): 85648-85657, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1446194

ABSTRACT

Coronavirus refers to a group of widespread viruses. The name refers to the specific morphology of these viruses because their spikes look like a crown under an electron microscope. The outbreak of coronavirus disease 2019 (COVID-19) that has been reported in Wuhan, China, in December 2019, was proclaimed an international public health emergency (PHEIC) on 30 January 2020, and on 11 March 2020, it was declared as a pandemic (World Health Organization 2020). The official name of the virus was declared by the WHO as "COVID-19 virus", formerly known as "2019-nCoV", or "Wuhan Coronavirus". The International Committee on Virus Taxonomy's Coronavirus Research Group has identified that this virus is a form of coronavirus that caused a severe outbreak of acute respiratory syndrome in 2002-2003 (SARS). As a result, the latest severe acute respiratory syndrome has been classified as a corona virus 2 (SARS-CoV-2) pathogen by this committee. This disease spread quickly across the country and the world within the first 3 months of the outbreak and became a global pandemic. To stop COVID-19 from spreading, the governing agencies used various chemicals to disinfect different commercial spaces, streets and highways. However, people used it aggressively because of panic conditions, anxiety and unconsciousness, which can have a detrimental impact on human health and the environment. Our water bodies, soil and air have been polluted by disinfectants, forming secondary products that can be poisonous and mutagenic. In the prevention and spread of COVID-19, disinfection is crucial, but disinfection should be carried out with sufficient precautions to minimize exposure to harmful by-products. In addition, to prevent inhalation, adequate personal protective equipment should be worn and chemical usage, concentrations, ventilation in the room and application techniques should be carefully considered. In the USA, 60% of respondents said they cleaned or disinfected their homes more often than they had in the previous months. In addition to the robust use of disinfection approaches to combat COVID-19, we will explore safe preventative solutions here.


Subject(s)
COVID-19 , Disinfectants , Humans , SARS-CoV-2 , Pandemics/prevention & control , Disease Outbreaks
5.
J Hazard Mater ; 424(Pt A): 127294, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1415558

ABSTRACT

Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792-30.0 MPa, varying the temperature (127-327 °C) and time (1-60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5 min) and high temperatures (above 277 °C), about 99% of HMWs were efficaciously converted to clean products by subcritical hydrothermal treatment. The results of hydrothermal extraction after 5 min indicated that at low temperatures (127-227 °C), the total organic carbon in the aqueous phase increased as the residual solid phase decreased, reaching a peak around 220 °C. Acetone soluble extracts or fat phase appeared above 227 °C and reached a maximum yield of 21% at 357 °C. Aspartic acid, threonine, and glycine were the primary amino acids; glycolic acid, formic acid, lactic acid, and acetic acid were obtained as the main organic acids, glucose, fructose, and cellobiose were substantial sugars produced from the aqueous phase after 5 min of hydrothermal subcritical hydrolysis extraction.


Subject(s)
COVID-19 , Medical Waste , Water Purification , Herbal Medicine , Humans , Hydrolysis , Pandemics , SARS-CoV-2 , Temperature
6.
Environ Res ; 193: 110265, 2021 02.
Article in English | MEDLINE | ID: covidwho-808966

ABSTRACT

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water and wastewater has recently been reported. According to the updated literature, the stools and masks of the patients diagnosed with coronavirus disease (COVID-19) were considered as the primary route of coronavirus transmission into water and wastewater. Most coronavirus types which attack human (possible for SARS-CoV-2) are often inactivated rapidly in water (i.e., the survival of human coronavirus 229E in water being 7 day at 23 °C). However, the survival period of coronavirus in water environments strongly depends on temperature, property of water, concentration of suspended solids and organic matter, solution pH, and dose of disinfectant used. The World Health Organization has stated that the current disinfection process of drinking water could effectively inactivate most of the bacterial and viral communities present in water, especially SARS-CoV-2 (more sensitive to disinfectant like free chlorine). A recent study confirmed that SARS-CoV-2 RNA was detected in inflow wastewater (but not detected in outflow one). Although the existence of SARS-CoV-2 in water influents has been confirmed, an important question is whether it can survive or infect after the disinfection process of drinking water. To date, only one study confirmed that the infectivity of SARS-CoV-2 in water for people was null based on the absence of cytopathic effect (CPE) in infectivity tests. Therefore, further studies should focus on the survival of SARS-CoV-2 in water and wastewater under different operational conditions (i.e., temperature and water matrix) and whether the transmission from COVID-19-contaminated water to human is an emerging concern. Although paper-based devices have been suggested for detecting the traces of SARS-CoV-2 in water, the protocols and appropriate devices should be developed soon. Wastewater and sewage workers should follow the procedures for safety precaution against SARS-CoV-2 exposure.


Subject(s)
COVID-19 , Coronavirus , Humans , RNA, Viral , SARS-CoV-2 , Wastewater , Water
SELECTION OF CITATIONS
SEARCH DETAIL